Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 20
Filter
1.
Journal of Pharmacy and Pharmacognosy Research ; 10(6):1126-1138, 2022.
Article in English | EMBASE | ID: covidwho-2207242

ABSTRACT

Context: COVID-19 was caused by the spread and transmission of SARS-CoV-2 at the end of 2019 until now. The problem comes when antiviral drugs have not yet been found and patients infected with SARS-CoV-2 can trigger a cytokine storm condition due to the effects of viral replication. Indonesia has various kinds of medicinal plants, such as Sonchus arvensis L., which are used as medicinal plants. Aim(s): To analyze the activity of the inhibitor as SARS-CoV-2 antiviral agents from n-hexane fractions of S. arvensis leaves. Method(s): The sample was collected from GC-MS analysis, PubChem, and Protein Databank database, then drug-likeness identification using Lipinski Rule of Five server and bioactive prediction of bioactive compounds as inhibitor activity was conducted by Molinspiration server. Furthermore, the docking simulation was performed using PyRx 0.9.9 software to determine the binding activity, molecular interaction by Discovery Studio software to identify position and interaction type, 3D molecular visualization by PyMol 2.5. software, and dynamic by CABS-flex 2.0 server to predict interaction stability. Result(s): alpha-Amyrin and beta-amyrin from n-hexane fractions of S. arvensis leaves had activity as SARS-CoV-2 inhibitors through interactions on helicase, RdRp, Mpro, and RBD-Spike, both compounds had more negative binding affinity than control drug and can produce stable chemical bond interactions in the ligand-protein complexes. However, the results were merely computational, so they must be validated through an in vivo and in vitro research approach. Conclusion(s): Sonchus arvensis L. leaves were predicted to have SARS-CoV-2 antiviral through inhibitor activity by alpha-amyrin and beta-amyrin. Copyright © 2022 Journal of Pharmacy & Pharmacognosy Research.

2.
Pharmacognosy Journal ; 14(6):796-805, 2022.
Article in English | EMBASE | ID: covidwho-2202767

ABSTRACT

SARS-CoV-2 virus has caused pandemic disease since the end of 2019. Virus transmission occurs through droplet and infects the host's respiratory tract rapidly. Viral propagation occurs through translation process of genome +ssRNA, then it being replicated forming some new body parts of virus and assemblied into virions that ready to infect. During the replication process, the translated viral genome in the form of polyprotein will be cut into smaller components by proteases, which one is 3CLpro. The presence of the 3CLpro receptor is used in drug development through in-silico molecular docking process to minimize failures before laboratory test. The antivirus compounds that used to inhibit the 3CLpro receptor are from gletang plant (Tridax procumbens Linn.). This study aim is to determine the value of binding affinity, the interaction between compounds and receptor, and the effect of drug components. The research was conducted by in-silico through the molecular docking process of 3CLpro receptor and antivirus compounds of gletang (Tridax procumbens Linn.), including betulinic acid, kaempferol and lignan. The results showed that the binding affinity of betulinic acid was -6.6 kcal/mol, kaempferol was -5.6 kcal/ mol and lignan was -5.4 kcal/mol. The interaction form of compounds and receptor was hydrogen bond, electrostatic, hydrophobic, and van der Waals. Compared to baicalein compound as a positive control with the value of binding affinity was -6.7 kcal/mol and its interaction with 3CLpro receptor, showed betulinic acid, kaempferol and lignan have smaller ability but they have the potential to inhibit the 3CLpro receptor. Copyright © 2022 Phcogj.Com.

3.
Pharmacognosy Journal ; 14(5):575-579, 2022.
Article in English | EMBASE | ID: covidwho-2144793

ABSTRACT

The global COVID-19 pandemic caused by SARS-CoV-2 has been the resulted of massive human deaths since early 2020. The purpose of this study was to determine the potential of mangosteen (Garcinia mangostana L.) as an inhibitor of RBD spike, helicase, Mpro, and RdRp activity of SARS-CoV-2 with an in silico approach. The samples were obtained from PubChem and RCSB PDB. Analysis of the similarity of the drug was carried out with the Swiss ADME on the basis of Lipinski rule of five. Prediction of antivirus probabilities was carried out using PASS Online. Molecular screening was performed using PyRx through molecular docking. Discovery Studio was used for visualization. The bioactive compounds with the highest antiviral potential were indicated with the lowest binding affinity to the targeted proteins RBD spike, helicase, Mpro, and RdRp of SARS-CoV-2. The results indicated that mangiferin has the greatest potential as a potential antiviral. However, more research is required to validate the results of these computational predictions. Copyright © 2022 Phcogj.Com.

4.
Pharmacognosy Journal ; 14(5):565-574, 2022.
Article in English | EMBASE | ID: covidwho-2144792

ABSTRACT

The aim of this study is to screen the content of bioactive compounds of Moringa oleifera and to identify its potential as an antiviral against COVID 19 through an entry inhibitor mechanism using bioinformatics tools. The sample was obtained from PubChem database. Amino acis sequences were obtained from the NCBI. Protein modeling is made through the SWISSMODEL site. The target proteins for this study were SARS-CoV-2 Mpro and RdRp. The protein-inhibitory interaction of the drug from M. oleifera bioactive compounds to SARS-CoV-2 was predicted by molecular docking with PyRx software.The result shows that M. oleifera was a potential antiviral candidate for SARS-CoV-2 with an entry inhibitor mechanism through a compound, especially quercetin. The RFMS value of both interactions between Mpro and quercetion and RdRp with quercetin were not higher than 1.05. This result still needed further research to prove this prediction. Copyright © 2022 Phcogj.Com. This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International license.

5.
Indonesian Journal of Chemistry ; 22(5):1163-1176, 2022.
Article in English | Scopus | ID: covidwho-2091359

ABSTRACT

COVID-19 pandemic has no immediate ending in sight, and any significant increasing cases were observed worldwide. Currently, there are only two main strategies for developing COVID-19 drugs that predominantly use a proteomics-based approach, which are drug repurposing and herbal medicine strategies. However, a third strategy has existed, called small interfering RNA or siRNA, which is based on the transcriptomics approach. In the case of SARS-CoV-2 infection, it is expected to perform by silencing the viral gene, which brings the surface glycoprotein (S) gene responsible for SARS-CoV-2 viral attachment to the ACE2 receptor on the human host cell. This third approach applies a molecular simulation method comprising data retrieval, multiple sequence alignment, phylogenetic tree depiction, 2D/3D structure prediction, and RNA-RNA molecular docking. The expected results are the prediction of 2D and 3D structures of both siRNA and mRNA silenced S genes along with a complex as the result of a docking method formed by those silenced genes. An Insilco chemical interaction study was performed in testing siRNA and mRNA complex’s stability with the confirmation result of a stable complex which is expected to be formed before mRNA reaches the ribosome for the translation process. Thus, siRNA from the S gene could be considered a candidate for the COVID-19 therapeutic agent. © 2022, Gadjah Mada University. All rights reserved.

6.
Pharmacognosy Journal ; 14(4):352-357, 2022.
Article in English | Scopus | ID: covidwho-2056099

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes the COVID-19 pandemic that infects humans and attacks the body's immune system. The purpose of the study was to identify the potential of bioactive compounds in purslane (Portulaca oleracea L.) and star anise (Illicium verum Hook) via a dual inhibitor mechanism against SARS-CoV-2 proteases with an in silico approach. The samples were obtained from PubChem and RSCB PDB. Antivirus probability prediction was performed on PASS Online. Virtual screening was performed with PyRx via molecular docking. Visualization was used by PyMol and Discovery Studio. Compounds with the best antiviral potential are indicated by the low binding affinity value to the target proteins, namely SARS-CoV-2 TMPRSS2 and PLpro. The results showed that purslane luteolin has the best antiviral potential. However, further studies are required to validate this computational prediction. © 2022 Phcogj.Com.

7.
Pharmacognosy Journal ; 14(4):267-272, 2022.
Article in English | EMBASE | ID: covidwho-2033369

ABSTRACT

The global pandemic of COVID-19 has caused disastrous consequences for both humans and the economy. The purpose of this study was to determine the potential of juwet (Syzygium cumini L.) and moringa (Moringa oleifera L.) as inhibitors of RBD spike, helicase, Mpro, and RdRp activity of SARS-CoV-2 with an in-silico approach. Samples were obtained from PubChem and RSCB PDB databases. The drug similarity analysis was determined using Swiss ADME and the Lipinski rule of five. Prediction of antivirus probabilities is carried out with PASS Online. Molecular screening is performed by molecular docking using PyRx. Visualization was used using PyMol and Discovery Studio. The bioactive compounds with the best antiviral potential had the lowest affinity bonds to the target proteins against RBD spike, helicase, Mpro, and RdRp of SARS-CoV-2. Results show that ellagic acid from java plum and myricetin from moringa have the best potential as potential antivirals. However, more research is required to validate the results of these computational predictions.

8.
Pharmacognosy Journal ; 14(3):604-609, 2022.
Article in English | EMBASE | ID: covidwho-1957552

ABSTRACT

The global pandemic of coronavirus disease is still widely spread across the world causing catastrophic effect in both human life and global economy. By the end of year 2021, it has caused a total of 5.437.636 deaths across the world. Indonesia has rich plant biodiversity including medicinal plants that may be used for combating the virus. One of the commonly used medicinal plants comes from Allium species and it has been proved to have antiviral activity. Conducting an in silico study, we screened bioactive compounds that came from Allium sativum to fight against coronavirus through the inhibition of 3CL-Pro, one of the major protease that have an active role for viral replication. Molecular docking of compounds from Allium sativum to 3CL-Pro resulting in the discovery of 5 compounds that have the best binding affinity to 3CL-Pro, which are squalene, 1,4-dihydro-2,3-benzoxathiin 3-oxide, 1,2,3-propanetriyl ester, trans-13-octadecenoic acid and methyl-11-hexadecenoate with binding affinity of -7, -6.5, -5.9, -5.7 and -5.6 kcal/mol, respectively. It is very likely that these compounds can be candidates for therapeutic agents and these candidates need to be studied further.

9.
Pharmacognosy Journal ; 14(1):85-90, 2022.
Article in English | CAB Abstracts | ID: covidwho-1903772

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the virus that causes COVID-19 which is responsible for respiratory illness infection in humans. The virus was first identified in China in 2019 and later spread to other countries worldwide. This study aims to identify the bioactive compounds from mangosteen (Garcinia mangostana L.) as an antiviral agent via dual inhibitor mechanisms against two SARS-CoV-2 proteases through the in silico approach. The three-dimensional structure of various bioactive compounds of mangosteen from the database was examined. Furthermore, all the target compounds were analyzed for drug, antiviral activity prediction, virtual screening, molecular interactions, and threedimensional structure visualization. It aimed to determine the potential of the bioactive compounds from mangosteen that can serve as antiviral agents to fight SARS-CoV-2. Results showed that the bioactive compounds from mangosteen have the prospective to provide antiviral agents that contradict the virus via dual inhibitory mechanisms. In summary, the binding of the various bioactive compounds from mangosteen results in low binding energy and is expected to have the ability to induce any activity of the target protein binding reaction. Therefore, it allows various bioactive compounds from mangosteen to act as dual inhibitory mechanisms for COVID-19 infection.

10.
Journal of Pharmacy and Pharmacognosy Research ; 10(3):418-428, 2022.
Article in English | EMBASE | ID: covidwho-1885202

ABSTRACT

Context: Oral manifestations that arose from COVID-19 infection often causes morbidity and systemic drug administration is less effective. Roselle flower (Hibiscus sabdariffa) is one of the plants that is often used in infusion as it gives health benefits. Hence, H. sabdariffa may benefit from adjuvant therapy to treat oral manifestation due to COVID-19. Aims: To investigate the potential of H. sabdariffa anthocyanins, tartaric acid, and ascorbic acid chemical compounds as antiviral, anti-inflammatory, antioxidant, and increasing tissue regeneration in oral manifestation due to COVID-19 infection in silico. Methods: Chemical compounds consisted of anthocyanins, (+)-tartaric acid, and ascorbic acid beside target proteins consisted of ACE2-spike, Foxp3, IL-10, IL6, IL1β, VEGF, FGF-2, HSP70, TNFR and MDA-ovalbumin were obtained from the database, ligand samples were selected through absorption, distribution, metabolism, excretion and toxicology analysis, then molecular docking simulations, identification of protein-ligand interactions, and 3D visualization were performed. Results: Anthocyanins, tartaric acid, and ascorbic acid are the active compounds in H. sabdariffa, which act as antioxidants. The activity of anthocyanin compounds is higher than other compounds through value binding affinity, which is more negative and binds to specific domains of target proteins by forming weak binding interactions that play a role in biological responses. Anthocyanins have the most negative binding energy compared to tartaric-acid and ascorbic acid. Conclusions: Anthocyanins act as antioxidants;this mechanism increases heat shock protein-70 (HSP70), which may play an important role in increasing wound regeneration of oral manifestation in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) as documented in silico.

11.
Journal of Pure and Applied Microbiology ; 16(2):1018-1027, 2022.
Article in English | EMBASE | ID: covidwho-1884885

ABSTRACT

Coronavirus disease (COVID-19), which was due to novel coronavirus was detected in December 2019 in Wuhan, China for the first time and spread rapidly became a global pandemic. This study aimed to predict the potential of macroalgae compounds as SARS-CoV-2 antiviral by inhibiting of ACE2 receptor through in silico approach. Twenty-seven macroalgae compounds were obtained from PubChem (NCBI, USA), while target protein ACE2 receptor was collected from Protein Data Bank (PDB). Then the initial screening study drug-likeness conducted by Lipinski rule of five web server and prediction of bioactive probability carried out by PASS (Prediction of activity spectra for biologically active substances) Online web server. After those compounds were approved by Lipinski's rule of five and PASS online prediction web server, the blind docking simulation was performed using PyRx 0.8 software to show binding energy value. Molecular interaction analysis was done using BIOVIA Discovery Studio 2016 v16.1.0 and PyMOL v2.4.1 software. There are six macroalgae compounds approved by Lipinski's rule of five and PASS Online Analysis. The result is that macroalgae compound siphonaxanthin among 27 macroalgae compound showed strong binding energy to bind ACE2 receptor with -8.8 kcal/mol. This study also used the SARS-CoV-2 drugs as positive control: remdesivir, molnupiravir, baricitinib, lopinavir, oseltamivir, and favipiravir. The result shows that siphonaxanthin has lowest binding energy than the common SARS-CoV-2 drug. Macroalgae compounds are predicted to have potential as SARS-CoV-2 antiviral. Thus, extension studies need to investigate by in vitro and in vivo analysis for confirmation the siphonaxanthin's inhibitory activity in combat SARS-CoV-2.

12.
Makara Journal of Science ; 25(3):162-171, 2021.
Article in English | Web of Science | ID: covidwho-1689830

ABSTRACT

Coronavirus disease 2019 (COVID-19), which is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has become a worldwide pandemic. Ginger (Zingiber officinale) is a rhizome, which is commonly used for culinary and medicinal purposes. In Indonesia, ginger is taken as traditional medicine by processing it into a drink known as jamu. The present study aimed to assess and evaluate the bioactive compounds in ginger that can be used in drug design for treating COVID-19. The crystal structure of the SARS-CoV-2 main protease (M-pro) was generated from a protein sequence database, i.e., Protein Data Bank, and the bioactive compounds in ginger were derived from the existing compounds library. M-pro is involved in polyprotein synthesis, including viral maturation and nonstructural protein gluing, making it a potential antiviral target. Furthermore, the bioactive compounds in ginger were analyzed using Lipinski's rule of five to determine their drug-like molecular properties. Moreover, molecular docking analysis was conducted using the Python Prescription 0.8 (Virtual Screening Tool) software, and the interaction between SARS-CoV-2 M-pro and the bioactive compounds in ginger was extensively examined using the PyMOL software. Out all of the 16 bioactive compounds that were docked successfully, 4-gingerol, which has the lowest binding energy against SARS-CoV-2 M-pro, as per the virtual screening results, was proven to have the most potential as a viral inhibitor of SARS-CoV-2.

13.
Biochemical and Cellular Archives ; 21(2):3323-3327, 2021.
Article in English | EMBASE | ID: covidwho-1589633

ABSTRACT

A massive transmission of SARS-CoV-2, which happens particularly in developing countries has continuously triggered a COVID-19 tsunami and may genuinely increase the mortality number. The significant mortality rate caused by the SARS-CoV-2 pandemic has made it a major world problem. Viral infectivity could arise from the lack of information on the specific antiviral drug. Tamarindus indica has been proven to be a potential antiviral through in vivo research as it decreases viral load in animal viruses. Nevertheless, at the preliminary stage, evidence-based approach like in silico study is necessitated to evaluate its potential as an antiviral in humans. This study screened the content of the active compounds of Tamarindus indica and identified its potential as an antiviral toward SARS-CoV-2 through an entry inhibitor mechanism using bioinformatics tools. Sample retrieval was carried out in the database, then the sample was identified for drug-likeness on the server. Likewise, molecular docking and dynamic simulations were carried out on the identified bioactive compounds. The results showed that all the bioactive compounds possess drug-like molecules and β-sitosterol has the most negative binding affinity. Tamarindus indica is predicted to be an antiviral candidate for SARS-CoV-2 with an entry inhibitor mechanism through a compound, specifically called β-sitosterol.

14.
Indonesian Journal of Pharmacy ; 32(3):328-337, 2021.
Article in English | Scopus | ID: covidwho-1552021

ABSTRACT

Recently, the world is facing outbreaks of severe acute respiratory syndrome coronavirus 2 or SARS-CoV-2 and the number of infected patients is increasing every day. Researchers are doing their best to find the most effective treatment to tackle this deathly virus. Several approaches had been proposed to be tested in the lab for efficacy but none of them are qualified to be used as the treatment of the COVID-19. Therefore, this study aimed to design a vaccine based on epitope, which was obtained from the nucleocapsid phosphoprotein (N protein). 38 samples of SARS-CoV-2 isolates were retrieved from the GISAID Database and NCBI GenBank. These samples were used to check the evolutionary relationship of the SARS-CoV-2 and determine whether these nucleocapsid proteins are well-conserved with less or even no mutations occur at all, and whether there was any evolutionary relationship between the recent coronavirus with the previous coronavirus by conducting the phylogenetic analysis. Then, it is desirable to see the molecular interaction between the human BCR/FAB receptor with the predicted peptides through the molecular docking process. All of the peptides were generated by the IEDB analysis tools and have already been tested for antigenicity, so the one that was being docked is the peptide that has antigen properties. Based on the analysis that had been done, the PEP1 was recommended as an epitope-based peptide vaccine candidate to deal with the SARS-CoV-2 outbreaks. Copyright © 2020 THE AUTHOR(S).

15.
Journal of Pharmacy & Pharmacognosy Research ; 10(1):138-146, 2022.
Article in English | Web of Science | ID: covidwho-1481619

ABSTRACT

Context: The COVID-19 outbreak is caused by the transmission and infection of SARS-CoV-2 at the end of 2019. It has led many countries to implement lockdown policies to prevent the viral spreading. Problems arise in a COVID-19 patient because of viral infection that leads to a systemic response in the immune system, specifically due to cytokine storm. Moreover, the antiviral drugs that have not been found. Indonesia had a variety of traditional medicines, such as is 'jamu'. It consists of a mixture of natural ingredients such as Moringa oleifera Lam. and Curcuma longa L. Aims: To identify the activity of dual inhibitors as antiviral and anti-inflammatory agents from herbal combination compounds. Methods: Sample was collected from PubChem (NCBI, USA) and Protein Data Bank (PDB), then drug-likeness analysis using Lipinski rule of five in SCFBIO web server and bioactive probability analysis of bioactive compounds were conducted by PASS web server. Furthermore, the blind docking method was performed using PyRx 0.8 software to determine the binding activity and molecular interaction by PoseView web server and PyMol software v2.4.1 (Schrodinger, Inc, USA). Results: Cryptochlorogenic acid and curcumin have been computationally proven as dual inhibitors for antivirals by inhibiting Mpro SARS-CoV-2 and as anti-inflammatory through inhibition of NFKB1 activity. However, the results are merely computational so that it must be validated through a wet lab research. Conclusions: The combination of Moringa oleifera Lam. and Curcuma longa L. is predicted to have antiviral and anti-inflammatory activity through dual inhibitor mechanism played by cryptochlorogenic acid and curcumin.

16.
Indian Journal of Forensic Medicine and Toxicology ; 15(4):2797-2803, 2021.
Article in English | EMBASE | ID: covidwho-1449618

ABSTRACT

Cluster of pneumonia infection emerged in Wuhan, China due to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Additionally, more than 190 countries have confirmed 82 million cases of SARS-CoV-2 infection. Currently, there is a SARS-CoV-2 epidemic, and no effective prophylactic methods are available. A vaccine is considered as an effective method to restrict an epidemic. Several vaccine designing techniques have been established, which is enabling researchers from various institutes for developing vaccine towards SARS-CoV-2 infections. In this review, we condense the development of vaccine research against SARS-CoV-2.

17.
Research Journal of Pharmacy and Technology ; 14(8):4509-4512, 2021.
Article in English | CAB Abstracts | ID: covidwho-1395877

ABSTRACT

Indonesia has abundant medicinal plants, which have been historically used by the population in treating diseases for generations. Traditional Indonesian medicine and the medicinal plants used could lead to the discovery of novel drugs. For example, Muntingia calabura L., also known as kersen, is a well-known medicinal plant that has been used to treat various diseases worldwide. The pharmacological activities and phytochemical composition of the whole plant of M. calabura L. have been investigated and identified by scientists in recent decades. These studies have established the therapeutic potential of kersen for drug discovery. This present review provides an overview of the ethnopharmacology, pharmacology, and phytochemistry of M. calabura L. as they relate to its use against severe acute respiratory syndrome-coronavirus 2 (SARS-CoV-2).

18.
Journal of Pure and Applied Microbiology ; 14(Suppl. 1):1035-1042, 2020.
Article in English | CAB Abstracts | ID: covidwho-1395594

ABSTRACT

Coronavirus disease 2019 (COVID-19) is a disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). COVID-19 has spread quickly across the world and has been declared a pandemic. Indonesia has many COVID-19 cases, with a high mortality rate. This study aimed to describe the distribution of COVID-19 in Indonesia and constructed the SARS-CoV-2 phylogenetic tree from Indonesian isolates and those from other countries, including other CoVs to determine their relationship. The distribution data of COVID-19 in Indonesia were obtained from the COVID-19 Management Handling Unit and descriptively analyzed. SARS-CoV-2 isolates were retrieved from the GenBankR (National Center of Biotechnology Information, USA) and GISAID EpiCoVTM databases and were used to construct phylogenetic trees using MEGA X software. Of the 37 provinces in Indonesia, five provinces with the highest case fatality rates were DKI Jakarta, Jawa Barat, Jawa Timur, and Banten, and the five provinces with the highest cure rate were Kepulauan Riau, Bali, Aceh, Gorontalo, and DI Yogyakarta. SARS-CoV-2 Indonesian isolates were closely related to SARS-CoV-2 isolates from other countries. The rapid and widespread distribution of SARS-CoV-2 in Indonesia was caused by the lack of compliance with territorial restrictions and dishonesty with medical personnel. These data revealed that mutations can occur during the transmission process, which can be caused by a history of travel and increased patient immunity.

19.
Journal of Pure and Applied Microbiology ; 14(Suppl. 1):999-1005, 2020.
Article in English | CAB Abstracts | ID: covidwho-1395591

ABSTRACT

Recently, a novel coronavirus (SARS-CoV-2) appeared which is conscientious for the current outbreak in China and rapidly spread worldwide. Unluckily, there is no approved vaccine found against SARS-CoV-2. Therefore, there is an urgent need for designing a suitable peptide vaccine constituent against the SARS-CoV-2. In this study, we characterized the spike glycoprotein of SARS-CoV-2 to obtain immunogenic epitopes. In addition, we used 58 SARS-CoV-2 isolates were retrieved from the Global Initiative on Sharing All Influenza Data (GISAID) and National Center for Biotechnology Information (NCBI), then aligned to obtain the conserved region of SARS-CoV-2 spike glycoprotein. The interaction between the conserved region with ACE2 receptor, a SARS-CoV-2 receptor on the host cell, has been evaluated through molecular docking approach. The B-cell epitope was identified using the immune epitope database (IEDB) web server. Interestingly, we recommend Pep_4 ADHQPQTFVNTELH as a epitope-based peptide vaccine candidate to deal with the SARS-CoV-2 outbreak. Pep_4 has a high level of immunogenicity and does not trigger autoimmune mechanisms. Pep_4 is capable of forming BCR/Fab molecular complexes with the lowest binding energy for activation of transduction signal the direct B-cell immune response. However, further study is suggested for confirmation (in vitro and in vivo).

20.
Journal of Pure and Applied Microbiology ; 14(Suppl. 1):971-978, 2020.
Article in English | CAB Abstracts | ID: covidwho-1395588

ABSTRACT

Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), a novel coronavirus and the primary causative agent of coronavirus disease 2019 (COVID-19), first occurred in China and rapidly spread worldwide. The government of the Republic of Indonesia confirmed its first two cases of COVID-19 in March 2020. COVID-19 is a serious illness with no efficacious antiviral medication or approved vaccine currently available. Therefore, there is a need to investigate the genome of SARS-CoV-2. In this study, we characterized SARS-CoV-2 spike glycoprotein genes from Indonesia to investigate their genetic composition and variability. Overall, ten SARS-CoV-2 spike glycoprotein gene sequences retrieved from GenBank (National Center for Biotechnology Information, USA) and the GISAID EpiCoV database (Germany) were compared. We analyzed nucleotide variants and amino acid changes using Molecular Evolutionary Genetics Analysis (MEGA) X and analyzed gene similarity using the LALIGN web server. Interestingly, we revealed several specific mutation sites, however, there were no significant changes in the genetic composition of SARS-CoV-2 spike glycoprotein genes, when compared to the Wuhan- Hu-1 isolate from China. However, this is a preliminary study and we recommend that molecular epidemiology and surveillance programs against COVID-19 in Indonesia be improved.

SELECTION OF CITATIONS
SEARCH DETAIL